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Abstract. The computed tomography imaging spectrometer (CTIS) is a relatively unknown snapshot
hyperspectral camera. It utilizes computational imaging approaches to gain the hyperspectral image from a
spatio-spectral smeared sensor image. We present a strongly miniaturized system with a dimension of only
36 � 40.5 � 52.8 mm and a diagonal field of view of 29�. We achieve this using a Galilean beam expander
and a combination of off-the-shelf lenses, a highly aspherical imaging system from a commercial smartphone,
and a 13 MP monochrome smartphone image sensor. The reconstructed hyperspectral image has a spatial
resolution of 400 � 300 pixel with 39 spectral channels.
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1 Introduction

Hyperspectral imaging is widely used in various fields such
as environmental observation, medical diagnosis, agricul-
tural, waste sorting or food quality control [1–6]. Most of
the used hyperspectral cameras use scanning approaches
(spatial, spectral or mixed) to capture the full data cube
consisting of a two-dimensional image for each spectral
channel [7, 8]. This leads to problems such as motion arti-
facts or an increased mechanical complexity (moving
parts). The computed tomography imaging spectrometer
(CTIS), in contrast, uses a non-scanning approach. It
belongs, such as the pixel-level filter array camera or the
multiaperture filtered camera, to the snapshot spectral
imaging cameras [9, 10].

A CTIS system computes the hyperspectral information
from a single captured sensor image. A typical optical design
is illustrated in Figure 1a. A field stop is used to limit the size
of the imaged scene. It is usually placed in the intermediate
image plane of the first lens. A subsequent diffractive optical
element (DOE) creates a spatio-spectral smeared two-
dimensional sensor image. The zeroth diffraction order is
usually located in the middle of the sensor and is equivalent
to a panchromatic image of the scene. Multiple higher
diffraction orders, that are similar to oblique projections of
the hyperspectral data cube, are arranged around it.

A reconstruction algorithm is required to derive the
hyperspectral image from the sensor image. It solves a

similar problem as the ones used for computed tomography
scanners. Multiple two-dimensional projections are used to
infer a three-dimensional data cube. In this paper, we use an
implementation based on the expectation-maximization
(EM) algorithm that utilizes spatial shift-invariance [11].
It is a model based Maximum-Likelihood iterative solver.

The system model is usually derived from a measured
point spread fuction (PSF) for every spectral channel to
be reconstructed. The PSF is a commonly utilized metric
to assess the quality of imaging systems by measuring the
image of a point light source. For a CTIS system, the result-
ing images look different from normal, as they include not
only the direct image of the point light source at the center
(zeroth diffraction order), but also the diffracted ones
surrounding it. This point pattern still includes the optical
aberrations, but more important, it also includes the
position and spectral displacement of the higher diffraction
orders. With increasing wavelength, the points move
farther away from the zeroth diffraction order.

The PSF has to be measured only for one central point
light source because spatial shift-invariance is utilized. In a
perfect system, the sensor image of a scene matches the
spectral sum of all PSF convolved with the corresponding
(ground truth) spectral images of the object. The algorithm
optimizes the estimated hyperspectral image iteratively by
minimizing the difference between the computed sensor
image and the measured sensor image.

The EM-algorithm is very sensitive to violations of
the spatial shift-invariance. The reconstruction quality
decreases considerably when this requirement is not met.
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Possible reasons for this are, for example, distortion in the
sensor signal, spatially dependent aberrations, or noise in
the PSF and the measured image of the scene. We use
several pre-processing steps to optimize the match between
the PSF and the pre-processed sensor signal, and hereby the
reconstruction quality.

Furthermore, the EM-algorithm is very computation-
ally intensive, which can lead to reconstruction times of
several minutes. In recent years, there has been an increas-
ing number of research efforts aimed at solving this problem
by using neural networks [12–15]. We expect our system to
not only decrease in reconstruction time, but also to
increase in reconstruction quality when this approach is
used.

2 Miniaturization

One major drawback we want to address is the relatively
big size of most published CTIS systems [16–18], which
often hinders their use outside of laboratory environments.
The main reason for this is that the focal length of the
system has to be small when a reasonably large field of view
(FOV) is captured (full scene has the size of the zero order
projection in the image plane). The minimal focal length of
the re-imaging lens is limited because a distortion arises
when the angles of the diffracted rays become large. The
effect is caused by the non-linear diffraction of light in
image space (so called “conical diffraction”). Harvey et al.
shows how this can be calculated in direction cosine space
[19]. The first two lenses, therefore, act as a beam expander.
They reduce the ray angles and hence the total focal length.
The typically used Keplerian type of beam expander has
the advantage that the intermediate image can be used to
limit the imaged scene (field stop). However, we have found
that in some cases it is beneficial to use a Galilean type of
beam expander instead (Fig. 1b). It often achieves a better
optical performance in a smaller form factor when the same
complexity of lenses is used. The field stop is placed with
some distance in front of the first lens. One major drawback
of this approach is that the reconstructed hyperspectral
image is considerably vignetted if the field stop is placed
close to the system or a small f-number is used. The optimal
design depends on the requirements of the system.

3 Prototype

The goal for the prototype was to develop a system with a
very compact form factor. It should also have a large FOV
and a high resolution. To achieve this, we allow a certain
degree of vignetting. All optics, except the DOE, should
be ready-made. The system is designed for visible light, as
there is a larger selection of off-the-shelf components for this
range.

After evaluating several lens combinations in an optical
design program, we decided on the design shown in Figure 2.
It is based on the Galilean beam expander. The first ele-
ment is the field stop that is made of laser cut cardboard.
It is followed by an absorptive longpass filter (Hoya Y48)

that is used to block light below 480 nm. Lens 1 is realized
using two stacked lenses with a focal length of �4 mm each
(SLM-04B-04N from OptoSigma). The lenses are anti
reflection coated, and we additionally used a thin black
marker to draw apertures directly onto them. This helps
to reduce stray light. Lens 2 is an achromatic lens with a
focal length of 7.5 mm (#49-275-INK from Edmund
Optics). Together, those lenses achieve a beam expansion
of factor 4.4 and consequently an angle reduction by
roughly the same value. Subsequent to the beam expander
is a dichroic shortpass filter (#47-817 from Edmund
Optics) with a cut-off wavelength of 750 nm. It cannot be
placed behind the longpass filter because it has an angular
dependent transmission spectra. We located it behind the
beam expander, where the ray angles are lower.

It is important to spectrally limit the light transmitted
by the system. Light with a wavelength for which there is
no PSF measurement disrupts the reconstruction. The
resulting signal cannot be assigned to any reconstructed
spectral channel by the algorithm.

The following DOE is a custom, in-house produced
binary computer generated hologram (CGH). It is made
of photoresist on a 500 lm thick glass. It creates a 5 � 5
arrangement of the projections. Its design has been com-
puted using Fourier optics and the binary search algorithm
with a loss function that is optimized for CTIS [20].

Fig. 2. Optical design of the prototype.

Fig. 1. Different CTIS designs using (a) a Keplerian and (b) a
Galilean beam expander.
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The goal is to have an equal irradiance of all projections on
the sensor. The diffraction orders that are farther away from
the optical axis are spread over a bigger area. Therefore,
they need more light. This approach does not work for the
zeroth diffraction order because the height of the binary
structure can only be optimized for one wavelength. The
more the wavelength of the light deviates from the optimum,
the worse the diffraction efficiency and the stronger the
zeroth order. These two effects result in a zero order projec-
tion which is around 12 times brighter than the higher order
projections. For a good signal-to-noise ratio of the higher
order projections, we always need to acquire a second, over-
exposed image with a higher exposure time. This way we
obtain an image with a well exposed zero order projection
and one with well exposed higher order projections.

The prototype is therefore not single shot capable.
There are different possibilities to achieve a real single shot
system. It can, for example, be accomplished with a small
absorptive filter placed directly in the center of the image
sensor. Something similar has been done by Okamoto
et al. in one of the first CTIS publications [21]. They use
an attenuator in front of an additional image plane, which
is imaged using a camera. Another possibility to avoid the
need of capturing two images with different exposure
times is to use a DOE that is optimized for a broad spectral
range [22].

Another optimization goal for the CGH design is to have
a low stray light level. Because the zeroth order is much
brighter, every stray light overlapping the higher order
projections significantly worsens the signal, resulting in a
reduced reconstruction quality. We cannot perfectly elimi-
nate the stray light. Therefore, we reduce its influence by
a pre-processing step as explained in Section 4. Figure 3
shows a part of the design file and a photo of the glass waver
with several holographic structures next to each other. The
CGH is glued directly onto the holder of the smartphone lens
with viscous UV-curing glue. The pixel sizes in horizontal
and vertical direction are determined by the maximum
spatial frequencies in horizontal and vertical direction. Each
spatial frequency corresponds to one spot of the spot pattern
generated by the hologram. In the chosen geometry this
results in pixel sizes of 0.95 lmand 1.3 lm. Themanufactur-
ing goal for the height of the positive pixels is 442 nm. With
our photoresist this gives the best diffraction efficiency for
light with a wavelength of 575 nm. The phase difference
for this central wavelength is 180�.

The lens from a Sony Xperia 10 Plus smartphone
(illustrated as a black box model) is used as re-imaging lens.
We chose it because its stop is close to the front of the lens
housing and its large image size (compared to the focal
length of approximately 4 mm). The stop is used as the stop
of the full system. Therefore, the light travels through the
smartphone lens in the intended way. We also fix it to
the aluminum mount with glue. The See3CAM CU135M
from e-con Systems, with a monochrome, 10 bit, 13 MP
image sensor, is used as the camera body. It has a pixel size
of only 1.1 lm. The vital parts of the mechanics are made of
anodized aluminum, everything else is 3D printed.

A photo of all the individual components and the assem-
bled prototype can be seen in Figure 4. The total optical

track length is only 21; the total size including the housing
is 36 mm � 40.5 mm � 52.8 mm. The effective focal length
of 0.9 results in a diagonal fov of 29�.

Fig. 3. Part of the CGH design file (a) and a photo of the
finished glass waver (b).

Fig. 4. Photo of all individual components (a) and the
assembled prototype (b). (a) All components of the miniaturized
prototype. A: field stop, B: long pass filter, C: lens 1, D: lens 2,
E: short pass filter, F: aperture, G: CGH, H: lens 3, I: image
sensor. (b) Photo of the assembled prototype.
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4 Pre-processing and results

Figures 5a and 5b show raw sensor signals taken of a Color-
Checker placed at a distance of 500 mm. We used a 150 W
halogen floodlight, resulting in exposure times of 62.5 ms for
the zero order projection and 1 s for the higher order projec-
tions. These long exposure times can be reduced by using a
brighter light source. In our case, this was not possible
because shorter exposure times caused problems due to a
rolling shutter artifact originating from the flickering of
the AC-powered floodlights. The problem can be solved
by using DC-powered lights. To reduce the noise level of
our system for this demonstration, we always acquire
16 images and sum them. The system model (PSF for every
wavelength) is measured using a fiber-coupled monochro-
mator with a bandwidth of 7 nm. The output fiber was
placed centered in object space.

Some pre-processing is required to achieve the best
result with the EM-algorithm. The following steps are usu-
ally performed for each measurement:

� subtraction of pre-captured dark images,
� rectification of the distortion caused by the non-linear
diffraction,

� trim images to relevant area,
� remove stray light from the CGH,
� superimpose images taken with different exposure
times.

The stray light removal gives the greatest improvement
in reconstruction quality. The stray light originates mainly
from the CGH and cannot be completely avoided. We
accomplish the removal in two steps: A first stray light
image is computed by convolving the cropped zero
order image (low exposure time) with the zeroth diffraction
order of the summed PSF (high exposure time). This
approximates the stray light near the center, which is well
described by the PSF. The second stray light image corrects
the stray light farther away from the center. It is computed
using a two-dimensional polynomial fit of order 3. Multiple
sampling points are picked manually that are then used to
calculate the image. The points are chosen to be in areas
outside the projections. The signal would be zero here for
a perfect system. An example of the combined stray light
image is shown as a false color image in Figure 5c. It is sub-
tracted from the high exposure time sensor image. The
stray light accounts for up to 20% of the signal around
the higher diffraction orders. The low exposure time image
used for the zero order projection does not have a significant
amount of noise and does not need to be corrected. The
final pre-processed image is shown in Figure 5d.

Furthermore, we perform similar pre-processing steps
with the measured PSF. To reduce noise, and the influence
of local invariance, we perform a two-dimensional Gaussian
fit for each spot and replace it with the result. This gives a
symmetric, noise free spot. An RGB image, calculated from
the PSF’s pre-processed hyperspectral data cube, is shown
in Figure 6. Since the images are very sparse, it is strongly
overexposed to increase the visual spot size. One spot from
the bottom left projection for 670 nm is depicted and shown
in grayscale in the original and fitted version.

Several factors influence the spectral characteristics of
the reconstructed hyperspectral image. This includes, for
example, the spectral distribution of the halogen light
sources and the monochromator, and the spectral sensitiv-
ity of the optics (including the DOE) and the sensor. To
obtain results comparable to ground truth measurements,
we spectrally calibrate the reconstructed hyperspectral
image. We use the reconstructed measurement of a
Spectralon reflectance standard to determine a calibration
curve. This curve contains a correction factor for each spec-
tral channel. The Spectralon standard has a reflectance
value of almost 100% over the entire used spectral range.
Our measured spectrum gives the difference to this. The
calibration curve has to be determined only once for a
system when the illumination is kept constant.

The reconstruction result of the measurement taken of
the ColorChecker is illustrated in its RGB representation
together with some selected spectra in Figure 7. It has a yel-
low tint because no blue light is captured. The recon-
structed hyperspectral image has a spatial resolution of
400 � 300 pixel with 39 spectral channels (7 nm steps from
488 nm to 754 nm). The result is in a good agreement with
the ground truth values. We assume that remaining inaccu-
racies originate from noise, imperfect stray light correction,
and artifacts of the reconstruction algorithm. A custom lens
design and a DOE optimized for a broader spectral range
together with an improved reconstruction (for example by
using neural networks) could help to improve the perfor-
mance even further.

The overall system, including the reconstruction, is not
linear. Therefore, the quality of the reconstruction is
strongly object-dependent. We reconstructed with a step

Fig. 5. Raw sensor signals (a) and (b), stray light subtracted
from the high exposure time image (c) shown in false color, and
the pre-processed image (d). The low exposure time image is
taken with an exposure time of 62.5 ms, the high exposure time
image with an exposure time of (1 s). The subtracted stray light
makes up to 20% of the signal of the higher order projections.
(a) Low exposure time. (b) High exposure time. (c) Subtracted
stray light. (d) Pre-processed image.
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size of 7 nm because it gives good results, and it is the band-
width of the monochromator. The PSF measurement can
thus be used directly for the reconstruction. For simpler
scenes, it is possible to reconstruct with a higher spectral
resolution without quality loss. Simple to reconstruct scenes
are, for example, very sparse (small object in front of a
black background). Depending on the application, a trade-
off can be made between spectral resolution and reconstruc-
tion quality.

5 Conclusion

A strongly miniaturized and portable CTIS system has
been presented. Despite its size, it has a large resolution
and field of view. We achieved this using a Galilean instead
of a Keplerian beam expander. It can be used in applica-
tions where a small physical size is required. The CGH

has been optimized for the use with CTIS systems. Several
pre- and post-processing steps are necessary to achieve a
good reconstruction quality. The final result is in a good
agreement with the ground truth values.
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